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a common origin for the C7N unit of other natural products,24 

and it has been proposed that the C7N unit in mitomycin C is 
also derived from glucose by a shikimate-type pathway.25 On 
the other hand, the different sources of the C 2 units in gelda-
namycin vis-a-vis streptovaricin and rifamycin provide an in­
teresting biosynthetic variation for molecules which appear 
to be otherwise biogenetically very similar. 
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Charge Distribution in Large Polyoxoanions: 
Determination of Protonation Sites in V10O286- by 
17O Nuclear Magnetic Resonance 

Sir: 

Several polyoxoanions of the early transition elements are 
known to be protonated in solution,1'3 and/or the solid state.3-6 

Figure 1. The Di\, symmetized structure of Vi0C^s6- ( s e e r ef 13. 14) is 
shown in (a). Small filled circles represent vanadium atoms and large open 
circles represent oxygen atoms. One member of each symmetry equivalent 
set of atoms is labeled. 17O FTNMR spectra of V10C^s6- in H2O are 
shown in b-e. All spectra were measured at 25 0C, with a total vanadium 
concentrations of 1.5-1.8 M. Chemical shift assignments are given in (b), 
where the asterisk labels a metavanadate resonance. For chemical shift 
data, see Table I. 
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Table I. pH Dependent 17O Chemical Shifts for Na6Vi0O2 8-ISH2O in H2O 
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Chemical shifts6 

pH* 

6.0 
5.5 
5.0 
4.5 

H2O 

-1 
0 

- 1 
0 

Metavanadate 

- 9 2 5 
- 9 2 5 

— 
— 

0A<* 

-62 
-63 
-67 
-72 

O8 

- 4 0 6 
- 4 0 0 
- 3 9 6 
- 3 7 8 

Oc 

- 7 6 6 
- 7 6 4 
- 7 6 4 
- 7 5 9 

O0 

- 7 8 0 
- 7 8 6 
- 7 9 0 
- 8 0 3 

0 E 

- 8 9 3 
- 8 9 5 
- 8 9 8 
- 9 0 4 

0 F , 0 G 

-1143 
-1146 
- 1 1 5 0 
-1160 

Spectrum"" 

e 
b 
d 
c 

±0.2 pH units. * Negative chemical shift is in parts per million downfield from pure water at 25 0 C . Accuracy is about ±2 ppm, depending 
line width (see Figure lb-e) . c See Figure lb-e. d For labeling scheme, see Figure la. 

In no case, however, have the protonation sites been determined 
experimentally, and the location of protons has been surmised 
using bond-length-bond-strength correlations.4-6 Since the 
identification of basic oxygen sites in metal-oxygen compounds 
has important consequences regarding the reactivity of po-
lyoxoanions and the catalytic activity of metal oxides in gen­
eral, we have investigated this problem in aqueous solution 
using 17O NMR spectroscopy. We report here the determi­
nation of protonation sites in V10O2S6 - . 

The 17O NMR spectrum shown in Figure lb is obtained 
when Na6V1 0O2 8-ISH2O7 is dissolved in 37 atom % 17O en­
riched water.8 Acidification with HCl followed by stepwise 
addition of NaOH yields the spectra shown in Figure lc-e.8 

Chemical shifts for all observed resonances are tabulated in 
Table I. The resonance at about —925 ppm which appears only 
at higher pH's is due to metavanadate species9'10 which pre­
dominate in weakly basic solution." The remaining resonances 
are assigned to oxygens in V1 0O2S6 - (see Figure 1 a) utilizing 
the correlation between chemical shift and metal-oxygen bond 
order established elsewhere for polymolybdates15 and chro-
mates.16 Two continuous shifts of the V 1 0 O 2 8

6 - resonances 
occur as the solution pH is lowered (see Table I): resonances 
for O B and Oc shift upfield, whereas resonances for 0 A , O D , 
0 E , O F , and O Q shift downfield. When an oxygen site is pro-
tonated, the metal-oxygen bonds to that oxygen are weakened, 
leading to an upfield shift of its ' 7O resonance. Thus O6 , since 
its resonance undergoes a pronounced upfield shift upon 
acidification, is the predominant protonation site. Oc, since 
its resonance undergoes only a small upfield shift upon acidi­
fication, is protonated to a lesser extent.17 When V-O bonds 
to O B and Oc are weakened, the remaining V-O bonds in 
V 1 0O 2 8

6 - are strengthened in order to maintain approximately 
constant total bond order at vanadium. This bond strength­
ening leads to the downfield shift of resonances for O A , O 0 , 
O E , O F , and 0 G as the solution pH is lowered. The vibrational 
frequencies of V 1 0 O 2 8

6 - in the terminal oxygen region also 
shift to higher frequency as the pH is lowered,18-20 reflecting 
the increased terminal V-O bond strengths. 

The protonation sites observed in V | 0 O 2 8
6 - are correctly 

predicted by calculating covalent bond strengths21 using bond 
lengths observed in the unprotonated anion.13-14 The sum of 
V-O covalent bond strengths at each oxygen site, interpreted 
as the relative amount negative charge removed from formally 
dinegative oxygen, yields the sequence of increasing negative 
charge O 0 ~ 0 F < 0 E < O 0 < O c < O 8 < 0 A . Since 0 A is 
inaccessible to protons, the sequence correctly predicts 0 B and 
Oc to be the most basic oxygens, with 0 B more basic than Oc-
Note, however, that bond-length-bond-strength correlations21 

fail to give the proper basicity sequence. 

(2) 

(3) 

(4) 
(5) 

We are currently measuring pH dependent 17O NMR 
spectra of isopolymolybdates, -tungstates, -niobates, and -
tantalates in order to gain further insight into the general 
question of charge distribution in metal-oxygen clusters and 
its relation to structural parameters. 
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